Total number of printed pages-47

3 (Sem-6/CBCS) PHY RE 1/2/3/4/5

2022

PHYSICS

(Regular Elective)

Answer the Questions from any one Option. OPTION - A

(Communication Electronics)

Paper: PHY-RE-6016

Full Marks: 60

Time: Three hours

OPTION - B

(Digital Signal Processing)

Paper: PHY-RE-6026

Full Marks: 60

Time: Three hours

OPTION - C

(Advanced Mathematical Physics-II)

Paper: PHY-RE-6036

Full Marks: 80

Time: Three hours

OPTION - D

(Astronomy and Astrophysics)

Paper: PHY-RE-6046

Full Marks: 80

Time: Three hours

OPTION - E

(Classical Dynamics)

Paper: PHY-RE-6056

Full Marks: 80

Time: Three hours

The figures in the margin indicate full marks for the questions.

Answer either in English or in Assamese.

Contd.

OPTION - E

(Classical Dynamics)

Paper: PHY-RE-6056

- 1. Give short answer to **any ten** the following questions: 1×10=10
 - (a) An electron is subjected in a magnetic field of 1 Tesla. Find its Larmor frequency.
 - (b) What is scleronomous constrain?
 - (c) What kind of system the principle of virtual work deals with?
 - (d) Write the Lagrange's equation of motion for conservative systems.
 - (e) What is canonical or conjugate momentum?
 - (f) Define generalized coordinates.
 - (g) What do you means by dispersion relation?
 - (h) Draw potential energy vs displacement curve tor stable equilibrium.

- (i) What do you mean by inertial frames of reference?
- (j) Write the dimensional formula of coefficient of viscosity for a fluid.
- (k) What do you mean by proper time?
- (1) What is the angle made by the world line of light wave with the spatial axis?
- (m) Write the Navier-Stokes equation for an incompressible fluid.
- (n) What do you mean by world point in a Minkowski space?
- (o) Define central force.
- 2. Briefly answer **any five** of the following questions: 2×5=10
 - (a) Show that if the Lagrangian of a system does not contain a coordinate q_k explicitly the conjugate momentum is a constant of motion.
 - (b) What are holonomic and non-holonomic constraints?
 - (c) What is Hamilton's principle?

- (d) What are stable and unstable equilibrium?
- (e) What do you understand by normal modes of vibration?
- (f) State the postulates of special theory of relativity.
- (g) What do you mean by laminar and turbulent flow of fluids?
- (h) Draw the world line of a particle with velocity v when (i) v < c and (ii) v > c in two-dimensional space-time diagram.
- 3. Answer **any four** of the following questions: $5\times4=20$
 - (a) What is virtual displacement? State and explain the principle of virtual work.

 1 +4=5
 - (b) Find the Hamiltonian and the equation of motion of a harmonic oscillator by using Hamiltonian formulation.

- (c) A charged particle is placed in a constant uniform magnetic field. Find the expression of the Larmor radius and Larmor frequency. Draw and explain the motion of a charged particle in a cross electric and magnetic field. 3+2=5
- (d) Deduce Lagrange's equations of motion for small oscillations of a system in the neighbourhood of the stable equilibrium.
- (e) What is Reynold's number" On what factors does Reynold's number depend?
 What is its dimensional formula?

2+2+1=5

- (f) Define four-vector. Show that the scalar product of two four-vectors is an invariant quantity.

 1+4=5
- (g) What do you mean by length contraction in special relativity? Discuss the concept using space-time diagram. 1+4=5
- (h) Prove that space-time interval is invariant under Lorentz transformation equation.

- 4. Answer **any four** of the following questions: $10 \times 4 = 40$
 - (a) Two equal masses m are connected by springs having equal spring constant c so that the masses are free to oscillate on a frictionless table. The ends of the springs are attached with the fixed walls. Find out the Lagrangian and the equations of motion of the system.

3+7=10

- (b) What is Hamiltonian function? Write the physical significance of the Hamiltonian function. Derive the Hamilton's equations of motion for a system of particles.

 1+2+7=10
- (c) Find out the Lagrange's equations of motion for the following systems:

5+5=10

- (i) one dimensional harmonic oscillator
- (ii) a body of mass m falling freely under gravity near the surface of earth
- (d) Derive the Lagrange's equation of motion for a conservative system.

- (e) Discuss the vibration of linear triatomic molecules and obtain eigenvectors for different modes of vibrations.
- (f) Obtain the general solution for the displacement of the nth particle in case of transverse oscillations of n-coupled masses.
- (g) What is four-dimensional space-time?
 Using Minkowski's space-time diagram,
 discuss space-like, time-like and lightlike events. What is a light cone?

 2+2+2+2=10
- (h) What do you mean by an ideal fluid? How is it different from a real fluid? Obtain the continuity equation for steady one-dimensional flow of fluids.

2+2+6=10

(i) Obtain Lorentz transformation equation. Show that for classical limit when v < c, Lorentz transformation reduces to Galilean one. 7+3=10 (j) What is the difference between classical and relativistic Doppler effect? What do you mean by transverse Doppler effect? Can it be found in classical relativity? Using the concept of four-vector, obtain an expression for relativistic Doppler effect.

2+2+1+5=10