STRUCK

3 (Sem-5/CBCS) PHY HC 2

2022

PHYSICS

(Honours)

Paper: PHY-HC-5026

(Solid State Physics)

Full Marks: 60

Time: Three hours

The figures in the margin indicate full marks for the questions.

- 1. Choose the correct answer from the following: (any seven) 1×7=7
 - (a) The number of atoms per unit cell of a body centred cubic lattice (bcc) is
 - (i) 8
 - (ii) 1
 - (iii) 3
 - (iv) 2

(15)

1834W 1 (11)

first 2 to her

- (b) Classify the following unit cell into proper crystal system, a = 1.08 nm, b = 1.947 nm, c = 0.52 nm and $\alpha = 41^{\circ}$, $\beta = 82^{\circ}$, $\gamma = 95^{\circ}$
 - (i) Triclinic
 - (ii) Monoclinic
 - (iii) Orthorhombic
 - (iv) Hexagonal
- (c) Because of which property of the crystals, X-rays can be defracted from the crystals?
 - (i) Random arrangement of atoms
 - (ii) Colour of the crystals
 - (iii) Periodic array of atoms
 - (iv) None of the above
- (d) The harmonic oscillator can have values of energy as

- (i) nhw^2
- (ii) $n^2\hbar w$
- (iii) nhw
- (iv) 2nhw

- (e) The unit of magnetic susceptibility is
- 103011b1(i) Wb/m2 11 34 b155 165510
- (ii) Wb/m hard balaler of a
 - (iii) amp/m
 - (iv) unitless ratio

OK. II.: Transfiron temperature at

- (f) Diamagnetic materials possess
 - (i) permanent magnetic dipoles
 - (ii) no permanent magnetic dipoles

EN T = T 12 12

- (iii) induced dipole moment
- (iv) None of the above
- (g) Most widely used conducting materials are
- nodrao (i) germanium and silicon
 - (ii) copper and alumium
 - (iii) gold and silver
 - (iv) tungsten and platinum

hij Name of the shower with

3

OSP PHY HC RIC

- (h) Transition temperature T and critical field H_c for a superconductor are related to (Ho : critical field at OK, To: Transition temperature at 0° K.)
 - (i) $H_c = H_0(T_c 1)$
 - (ii) $H_c = H_0(T_c + 1)$
- (iii) $T_c = T_0 \left[1 \left(\frac{H_0}{H_c} \right)^2 \right]$
 - (iv) $H_c = H_0 \left| 1 \left(\frac{T}{T_c} \right)^2 \right|$
 - (i) The forbidden energy gap of carbon in diamond structure is
 - 0.7 eV (i)
 - 1 eV Toville one blog (10)
 - (iii) 0.01 eV
 - (iv) None of the above

- Intrinsic germanium can be made Ptype semiconductor by doping with
 - (i) phosphorous
 - aluminium (iii) sulphur wone

 - (iv) carbon
- The polarization P in dielectric field E and the electric flux density D can be related by the relation bas

$$(i) \quad E = \varepsilon_0 D + P \quad (i) \quad$$

permeability and magnetic susceptibility
$$Q_0 + E = C$$
 (ii)

(iii)
$$D = E \varepsilon_0 + P$$

$$\forall d \quad \text{bar}(iv) \quad D = \varepsilon_0 \left(E + P \right) \quad \text{sof} \quad \forall \quad \forall i$$

- (1) The chemical formula for magnetite is (R) with terrogramme (I what ges for
- 10 Jan (i) br Fe₂O₃ word S to be to be to
 - (ii) FeO
 - Define dipole moment and (iii) Fe₃O₄ to now and a strategy
- ention (iv) Fe(OH)2 Date 101061

Sector ?

CSI PHEHC 22 CF

- 2. Give short answers of the following questions: (any four) 2×4=8
 - (a) Write the basic differences between crystal and amorphous solid.
 - (b) Show that for a simple cubic lattice $d_{100}:d_{110}:d_{111}=\sqrt{6}:\sqrt{3}:\sqrt{2}$
 - (c) (i) Define Fermi energy level.
 - (ii) Draw the Fermi function with respect to energy for the temperature at T = 0K and T = 300 K.
 - (d) What do you mean by magnetic permeability and magnetic susceptibility?
 - (e) (i) Write the Dulong and Petit law related to specific heat of solid.
 - (ii) What do you understand by phonon?
 - (f) How are the variation of resistance (R) with temperature (T) changes for normal conductor and superconductor? Draw a simple graph of R vs T.
 - (g) Define dipole moment and polarization vector of dielectric.
 - (h) What do you mean by Atomic form factor and Geometrical structure factor?

\$ 1850 - 51030S) PHY HOUSE

3. An	swer estion	any three from the following $5\times 3=1$	ng 5
(a)	(i)	What do you mean by atomic packing factor of a crystal?	1
2	(ii)	Find out the packing factor of face centred cubic structure of a crystal.	
(d)	sic ar	Discuss the success and limitations of classical free electron theory of metal.	2
metal	(ii) inores	Why free electron theory is important in solid state physics?	1
I is II-aqy		Write down basic differences of classical and quantum free electron theory of metals.	f 2
(c)	(i) 1	What is Hall effect ?	1
	(ii)	Find out the expression for Hall coefficient.	3
×3-30	O (iii)	Write down the applications of	1
(b) an single fustify 1+1=2	ferr	at are differences between omagnetic, paramagnetic and magnetic materials?	

- (e) Draw the band structure for intrinsic semiconductor, p-type and n-type semiconductor.
- (f) (i) What do you mean by drift velocity, mobility of a conductor?
 - (ii) Write the expression for conductivity of intrinsic and extrinsic semiconductor.
 - (iii) Why conductivity of a metal decreases with the increase of temperature?
- (g) (i) What is superconductivity? 1
 - (ii) Explain type-I and type-II superconductor.
- (h) Discuss Meissner effect of superconductor.
- 4. Answer the following questions:

 (any three) 10×3=30
 - (a) (i) Why X-rays are used for material characterization? Can X-ray be defracted from a single slit of width 0.1 mm? Justify your answer. 1+1=2

- (ii) State the Bragg's law in X-ray diffraction of a crystalline solid.

 Derive its expression. 1+2=3
- plane in NaCl is 2.82 Å. X-rays incident on the surface of the crystal is found to give rise to 1st order Bragg's reflections at glancing angle 8.8°. Calculate the wavelength of X-rays.

(Given $\sin 8.8^{\circ} = 0.152$) 5

(b) (i) What is Miller indices in a crystal?

electrical and thermal

- (ii) How Miller indices are determined?
- (iii) Draw (100), (001), (010) and (111) plane of a simple cubic structure.
- (iv) Miller indices of a plane is (326). Find out the point of intercept made by the plane along the three crystallographic areas (x, y, z).

818 mas Store Strate Strate

- (v) The density of iron (having bcc structure) is 7900 kg/m³ and its atomic weight is 56. Calculate lattice parameters.
- (c) (i) State the Wiedemann-Franz law in solid. Discuss its physical significant.
 - (ii) Discuss the classical and quantum mechanical expression of Lorentz number.
 - (iii) For copper at 20 °C, the electrical and thermal conductivity are 1.7×10⁸ Ωm and 380 Wm⁻¹ K⁻¹ respectively.
 Calculate Lorentz number.
- (d) (i) Discuss the original concept of band theory of solid.
 - (ii) Discuss Kronig-Penney model related to band theory of solid.
- (iii) What do you mean by Brillouin zones?
 - (e) (i) What is specific heat of solid?.

Miller indices of a pione is (\$26).

(ii) Discuss Einstein theory of specific heat of solid.

- (f) (i) Deduce the expression for Curie law using classical theory of paramagnetism.
 - (ii) What is ferromagnetic domain?
 - (iii) How hysteresis curve is related to energy loss?
- (g) (i) Define Piezoelectric effect,
 Pyroelectric effect and
 Ferroelectric effect in solid.
 - (ii) Derive the Clausius-Mossotti equation for dielectric material.
- (h) Write short notes on any two of the following: 5×2=10
 - (i) Bravais lattice
 - (ii) Reciprocal lattice
 - (iii) Symmetry in crystal
 - (iv) Plasma oscillations

11