Total number of printed pages-7

3 (Sem-4/CBCS) PHY HC 1

2023

PHYSICS

(Honours Core)
Paper : PHY-HC-4016
(Mathematical Physics-III)
Full Marks : 60
Time : Three hours
The figures in the margin indicate full marks for the questions.

1. Give short answers to the following questions:
(a) Find the principal value of i^{i}.
(b) Define a multiply connected region in complex plane.
(c) Find the value of $L^{-1}\left\{\frac{1}{s(s-a)}\right\}$ for $s>a$.
(d) What does the equation $|z-i|=2$ represent ?
(e) State convolution theorem of Fourier transform.
(f) Write the transformation rule for a covariant tensor of rank two.
(g) Plot the number $e^{\left(1+i \frac{\pi}{4}\right)}$.
2. Answer the following questions: $2 \times 4=8$
(a) Define simple pole and essential singularity.
(b) Establish the shifting property of Fourier transform.
(c) Find inverse Laplace transform of $t^{-\frac{1}{2}}$.
(d) Show that the number of independent components of a skew-symmetric tensor of rank 2 in n-dimensional space is $\frac{n(n-1)}{2}$.
3. Answer any three questions of the following :
(a) Check the analyticity and hence find derivative of the function $f(z)=\sin z$.
$3+2=5$
(b) Find the value of the integral

$$
\int_{0}^{1+i}\left(x-y-i x^{2}\right) d z \text { along real axis from }
$$

$z=0$ to $z=1$ and then along the line parallel to imaginary axis from $z=1$ to $z=1+i$.
(c) Find the Fourier sine transform of a function defined by

$$
f(t)=\left\{\begin{array}{cc}
\cos \propto t, & 0 \leq t \leq \frac{\pi}{\propto} \\
0, & t>\frac{\pi}{\propto}
\end{array}\right.
$$

(d) Evaluate :

$$
L^{-1}\left\{\frac{(s+1)}{s^{2}(s+2)^{3}}\right\}
$$

(e) Define Levi-Civita symbol in three dimensional space. Show that

$$
(\vec{A} \times \vec{B})_{i}=\varepsilon_{i j k} A_{j} B_{k} \quad 2+3=5
$$

4. Answer the following questions: (any three) $10 \times 3=30$
(a) (i) Prove Cauchy-Riemann conditions for analytical functions. What is the sufficient condition for a function to be analytic ? $4+1=5$
(ii) Show that $\left|z_{1}+z_{2}\right| \leq\left|z_{1}\right|+\left|z_{2}\right|$
(iii) Give Laurent series expansion for function $f(z)$.
(b) (i) What are symmetric and antisymmetric tensors ? Show that every tensor can be expressed as the sum of two tensors, one of which is symmetric and the other antisymmetric in a pair of covarient or contravarient indices.
$2+3=5$
(ii) What is Kronecker delta ? Prove that Kronecker delta is a mixed tensor of second rank. $\quad 1+4=5$
(c) (i) Define Laplace transform of a function $F(t)$. Show that

$$
\begin{align*}
& L(1)=\frac{1}{s}, s>0 \text { and } \\
& L\left(e^{k t}\right)=\frac{1}{s-k}, s>k
\end{align*}
$$

Contd.
(ii) Find the inverse Laplace transform of

$$
\begin{equation*}
\frac{6}{2 s-3}-\frac{3+4 s}{9 s^{2}-16}+\frac{8-6 s}{16 s^{2}+9} \tag{5}
\end{equation*}
$$

(d) Find the Fourier transform of

$$
f(x)= \begin{cases}1-x^{2}, & |x| \leq 1 \\ 0 & |x|>1\end{cases}
$$

Hence, evaluate :

$$
\int_{0}^{\infty} \frac{x \cos x-\sin x}{x^{3}} \cos \frac{x}{2} d x
$$

(iii) $\int_{0}^{2 \pi} \frac{d \theta}{5+4 \cos \theta}$
(f) (i) The Laplace transform of $\sin 3 t=\frac{3}{s^{2}+9}$ and the Laplace transform of $\cos 5 t=\frac{s}{s^{2}+25}$. Find the Laplace transform of $5 \sin 3 t+3 \cos 5 t$ using linearity property of Laplace transform. 5
(ii) Find the inverse Laplace transform

$$
\text { of } 4 s+5 /(s-1)^{2}(s-2)
$$

(e) Evaluate any two of the following integrals : $\quad 5 \times 2=10$
(i) $\int_{-\infty}^{+\infty} \frac{\sin x}{x} d x$
(ii) $\int_{0}^{\alpha} \frac{d x}{x^{2}+1}$

