Total number of printed pages-4

3 (Sem-4/CBCS) PHY HC2

2023

PHYSICS

(Honours Core)

Paper : PHY-HC-4026

(Elements of Modern Physics)

$$
\begin{gathered}
\text { Full Marks : } 60 \\
\text { Time : Three hours }
\end{gathered}
$$

The figures in the margin indicate full marks for the questions.

1. Answer the following questions : $1 \times 7=7$
(a) What is the quantum of light ?
(b) What is the momentum of an electron if its de Broglie wavelength is $1 \AA$?
(c) What is wave particle duality ?
(d) Write one limitation of wave function ψ.
(e) Write the relation between half life and mean life of a radioactive sample.
(f) What is the radius of a nucleus of mass number 125 ?
(g) What is the function of a moderator in a nuclear reactor?
2. Answer the following questions : $2 \times 4=8$
(a) Explain why Compton effect cannot be observed with visible light.
(b) The threshold wavelength of a metal is $6000 \AA$. Find the work function of the metal.
(c) What is the physical significance of a wave function?
(d) Explain why pair production cannot take place in vacuum.
3. Answer any three questions from the following:
$5 \times 3=15$
(a) Find the expression of minimum energy of a confined particle using uncertainty principle.
(b) Define commutator. Show that position and momentum operators do not commute. $1+4=5$
(c) What is binding energy of a nucleus ? Draw a graph of binding energy per nucleon vs mass number of different nuclei. Write one conclusion that can be drawn from the graph. $2+2+1=5$
(d) Write how magic numbers can be explained from nuclear shell model.
(e) What is α decay ? Explain fine structure of α energy spectrum.

$$
1+4=5
$$

4. Answer any three questions taking at least one from each group (maximum two questions from one group): $10 \times 3=30$

GROUP-A

(a) What are phase velocity and group velocity ? Deduce the expressions of phase velocity and group velocity. Derive the relation between these velocities. $2+3+3+2=10$
(b) Derive Schrödinger equation for a nonrelativistic free particle.
(c) A particle of mass m and KE E is moving along positive X axis towards a finite potential step whose potential function is

$$
V(x)= \begin{cases}0 & \text { for } x<0 \\ V_{0} & \text { for } x>0\end{cases}
$$

Show that for $E>V_{0}$ the incident particle has certain probability of being reflected and certain probability of being transmitted.

GROUP-B

(d) What are the different modes of beta decay ? Explain the nature of β particle spectrum. What are the difficulties in interpreting the spectrum ? $3+3+4=10$
(e) Explain, in detail, the construction and different operating regions of a gas-filled detector.
(f) Explain the terms 'optical pumping' and 'population inversion'. Explain the three level pumping LASERS and mention two drawbacks of this type of LASER.

$$
2+2+4+2=10
$$

