Total number of printed pages-8

3 (Sem-3/CBCS) PHY HC 1

2022 PHYSICS (Honours)

Paper : PHY-HC-3016

(Mathematical Physics-II)

Full Marks : 60

Time : Three hours

The figures in the margin indicate full marks for the questions.

- 1. Answer **any seven** of the following questions: 1×7=7
 - (a) Define the singular point of a second order linear differential equation.
 - (b) If $P_n(x)$ and $Q_n(x)$ are two independent solutions of Legendre equation, then write the general solution of the Legendre equation.
 - (c) Give one example where Hermite polynomial is used in physics.

Contd.

(d) The function $P_n(1)$ is given as

(i) zero (ii) -1(iii) $P_n(-1)$ (iv) 1(Chapped

(Choose the correct option)

- (e) Define trace of a matrix.
- (f). What is the rank of a zero matrix ?
- (g) Define self-adjoint matrix.
- (h) What do you mean by eigenvector ?
- (i) Which one of the following represents an equation of a vibrating string ?

(i)
$$\frac{\partial^2 y}{\partial t^2} = c^2 \frac{\partial^2 y}{\partial x^2}$$

(ii)
$$\frac{\partial y}{\partial t} = c \frac{\partial y}{\partial x}$$

- (iii) None of the above (Choose the correct option)
- (j) Write the Laplace equation spherical polar co-ordinate system.
- (k) Define gamma function.
- (l) State the Dirichlet condition for Fourier series.
- 3 (Sem-3/CBCS) PHY HC 1/G 2

- 2. Answer **any four** of the following questions : 2×4=8
 - (a) Check whether Frobenius method can be applied or not to the following equation :

$$2x^{2}\frac{d^{2}y}{dx^{2}} - x\frac{dy}{dx} + (x-5)y = 0$$

- (b) If $\int_{-1}^{1} P_n(x) dx = 2$, find the value of n.
- (c) If A and B are Hermitian matrices, show that AB + BA is Hermitian whereas AB - BA is skew-Hermitian.

(d) Verify that
$$(AB)^T = B^T A^T$$
, where

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 3 & -2 & 1 \end{bmatrix} \text{ and } B = \begin{bmatrix} 1 & 2 \\ 2 & 0 \\ -1 & 1 \end{bmatrix}$$

- (e) Given matrices $\sigma_1 = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \sigma_2 = \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}, \sigma_3 = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix},$ show that $\sigma_1 \sigma_2 - \sigma_2 \sigma_1 = 2i\sigma_3$.
- (f) Using the property of gamma function evaluate the integral

$$\int_{0}^{\infty} x^4 e^{-x} dx$$

3

3 (Sem-3/CBCS) PHY HC 1/G

ise, Lecendra

Contd.

(g) Write the degree and order of the following partial differential equations :

(i)
$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} = 0$$

(ii)
$$\left(\frac{\partial u}{\partial x}\right)^3 + \frac{\partial u}{\partial t} = 0$$

- (h) Find the value of a_0 of the Fourier series for the function $f(x) = x\cos x$ in the interval $-\pi < x < \pi$.
- 3. Answer **any three** of the following questions: 5×3=15
 - (a) (i) Why is the function

 $(1-2xh+h^2)^{-\frac{1}{2}}$ known as a generating function of Legendre polynomial ?

(ii) Show that

$$(1-2xh+h^2)^{-\frac{1}{2}} = \sum_{n=0}^{\infty} P_n(x)h^n$$

where $P_n(x)$ is the Legendre polynomial. 4

3 (Sem-3/CBCS) PHY HC 1/G 4

- (b) Evaluate explicitly the Legendre's polynomials $P_2(x)$ and $P_3(x)$. $2\frac{1}{2}+2\frac{1}{2}=5$
- (c) Write the recursion formula for gamma function. Prove that

 $\Gamma\left(\frac{1}{2}\right) = \sqrt{\pi} = 1.772$

(d) What is diagonalize matrix ? Diagonalize the following matrix : 1+4=5

$$A = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}$$

(e) Express the matrix :

$$A = \begin{bmatrix} 2 & 1 & 0 \\ 1 & -1 & -2 \\ 4 & 2 & 0 \end{bmatrix}$$
 as a sum of symmetric
and skew-symmetric matrix.
(f) What is adjoint of a matrix ? For the
matrix $A = \begin{bmatrix} 1 & 2 \\ 3 & -5 \end{bmatrix}$ verify the theorem
 $A \cdot (AdjA) = (AdjA) \cdot A = |A| \cdot I$
where I is unit matrix. 1+4=5
3 (Sem-3/CBCS) PHY HC 1/G 5 Contd.

- (g) If the solution y(x) of Hermite's differential equation is written as
- $y(x) = \sum_{r=0}^{\infty} a_r x^{k+r}$, show that the allowed values of k are zero and one only. (h) Find the Fourier series representing f(x) = x, $0 < x < 2\pi$
- 4. Answer **any three** of the following questions : 10×3=30
 - (a) (i) Verify that the matrix $A = \frac{1}{3} \begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & -2 \\ -2 & 2 & -1 \end{bmatrix}$ is orthogonal. 2
 - (ii) Verify Cayley-Hamilton theorem for the matrix $A = \begin{bmatrix} 1 & 4 \\ 2 & 3 \end{bmatrix}$ and also find A^{-1} . 5+3=8
 - (b) Obtain the power series solution of the Legendre equation

$$\left(1-x^2\right)\frac{d^2y}{dx^2}-2x\frac{dy}{dx}+n(n+1)y=0$$

3 (Sem-3/CBCS) PHY HC 1/G 6

- (c) (i) Obtain the following orthogonality property of Legendre polynomial : $\int_{-1}^{+1} P_n(x)P_m(x)dx = 0 \text{ for } m \neq n \qquad 6$
 - (ii) Show that $H_0(x) = 1$ and $H_1(x) = 2x$ 2+2=4
- (d) Prove the following recurrence relations: 4+3+3=10
 - (i) $nP_n = (2n-1)xP_{n-1} (n-1)P_{n-2}$
 - (ii) $x P'_n P'_{n-1} = n P_n$
 - (iii) $2x H_n(x) = 2n H_{n-1}(x) + H_{n+1}(x)$
- (e) What is periodic function ? Express the periodic functions in a series of sine and cosine functions. What are Fourier coefficients ? Determine the Fourier coefficients. 1+1+1+7=10
- (f) (i) Using the method of separation of variables, solve : 6

7

$$\frac{\partial u}{\partial x} = 2 \frac{\partial u}{\partial t} + u$$
, where $u(x,0) = 6e^{-3x}$

3 (Sem-3/CBCS) PHY HC 1/G

Contd.

(ii) Find the eigenvalues of the matrix

$$A = \begin{bmatrix} 6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3 \end{bmatrix}$$

(g) (i)

If $H_n(x)$ be the polynomial of Hermite differential equation, prove that

$$\int_{-\infty}^{+\infty} e^{-x^2} H_n^2(x) \, dx = 2^n \sqrt{\pi} \cdot n! \quad 7$$

(ii) Prove that the following matrix is unitary :

$\left[\frac{1}{2}(1+i)\right]$	$\frac{1}{2}(-1+i)$
$\left\lfloor \frac{1}{2}(1+i)\right\rfloor$	$\frac{\frac{1}{2}(-1+i)}{\frac{1}{2}(1-i)}$

3

4

(h) Deduce the one dimensional wave equation of transversely vibrating string under tension T. Solve the equation by the method of separation of variables. 7+3=10

8

3 (Sem-3/CBCS) PHY HC 1/G

1800