Total number of printed pages-8

3 (Sem-3/CBCS) PHY HC 1

2022

PHYSICS

(Honours)
Paper: PHY-HC-3016
(Mathematical Physics-II)
Full Marks : 60
Time : Three hours
The figures in the margin indicate full marks for the questions.

1. Answer any seven of the following questions:
(a) Define the singular point of a second order linear differential equation.
(b) If $P_{n}(x)$ and $Q_{n}(x)$ are two independent solutions of Legendre equation, then write the general solution of the Legendre equation.
(c) Give one example where Hermite polynomial is used in physics.

Contd.
(d) The function $P_{n}(1)$ is given as
(i) zero
(ii) -1
(iii) $P_{n}(-1)$
(iv) 1
(Choose the correct option)
(e) Define trace of a matrix.
(f). What is the rank of a zero matrix ?
(g) Define self-adjoint matrix.
(h) What do you mean by eigenvector ?
(i) Which one of the following represents an equation of a vibrating string ?
(i) $\frac{\partial^{2} y}{\partial t^{2}}=c^{2} \frac{\partial^{2} y}{\partial x^{2}}$
(ii) $\frac{\partial y}{\partial t}=c \frac{\partial y}{\partial x}$
(iii) None of the above
(Choose the correct option)
(i) Write the Laplace equation spherical polar co-ordinate system.
(k) Define gamma function.
(l) State the Dirichlet condition for Fourier series.
2. Answer any four of the following questions : $\begin{array}{r}2 \times 4=8\end{array}$
(a) Check whether Frobenius method can be applied or not to the following equation :

$$
2 x^{2} \frac{d^{2} y}{d x^{2}}-x \frac{d y}{d x}+(x-5) y=0
$$

(b) If $\int_{-1}^{+1} P_{n}(x) d x=2$, find the value of n.
(c) If A and B are Hermitian matrices, show that $A B+B A$ is Hermitian whereas $A B-B A$ is skew-Hermitian.
(d) Verify that $(A B)^{T}=B^{T} A^{T}$, where

$$
A=\left[\begin{array}{rrr}
1 & 2 & 3 \\
3 & -2 & 1
\end{array}\right] \text { and } B=\left[\begin{array}{rr}
1 & 2 \\
2 & 0 \\
-1 & 1
\end{array}\right]
$$

(e) Given matrices
$\sigma_{1}=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right], \sigma_{2}=\left[\begin{array}{cc}0 & -i \\ i & 0\end{array}\right], \quad \sigma_{3}=\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right]$,
show that $\sigma_{1} \sigma_{2}-\sigma_{2} \sigma_{1}=2 i \sigma_{3}$.
(f) Using the property of gamma function evaluate the integral

$$
\int_{0}^{\infty} x^{4} e^{-x} d x
$$

(g) Write the degree and order of the following partial differential equations :
(i) $\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}+\frac{\partial^{2} u}{\partial z^{2}}=0$
(ii) $\left(\frac{\partial u}{\partial x}\right)^{3}+\frac{\partial u}{\partial t}=0$
(h) Find the value of a_{0} of the Fourier series for the function $f(x)=x \cos x$ in the interval $-\pi<x<\pi$.
3. Answer any three of the following questions: $5 \times 3=15$
(a) (i) Why is the function $\left(1-2 x h+h^{2}\right)^{-1 / 2}$ known as a generating function of Legendre polynomial ?
(ii) Show that

$$
\left(1-2 x h+h^{2}\right)^{-1 / 2}=\sum_{n=0}^{\infty} P_{n}(x) h^{n}
$$

where $P_{n}(x)$ is the Legendre polynomial.
(b) Evaluate explicitly the Legendre's polynomials $P_{2}(x)$ and $P_{3}(x)$.

$$
21 / 2+2^{1 / 2}=5
$$

(c) Write the recursion formula for gamma function. Prove that

$$
\Gamma\left(\frac{1}{2}\right)=\sqrt{\pi}=1.772
$$

(d) What is diagonalize matrix ? Diagonalize the following matrix :

$$
A=\left[\begin{array}{lll}
1 & 0 & 1 \\
1 & 1 & 0 \\
1 & 0 & 1
\end{array}\right]
$$

(e) Express the matrix :
$A=\left[\begin{array}{rrr}2 & 1 & 0 \\ 1 & -1 & -2 \\ 4 & 2 & 0\end{array}\right]$ as a sum of symmetric and skew-symmetric matrix.
(f) What is adjoint of a matrix ? For the matrix $A=\left[\begin{array}{rr}1 & 2 \\ 3 & -5\end{array}\right]$ verify the theorem $A \cdot(\operatorname{Adj} A)=(\operatorname{Adj} A) \cdot A=|A| \cdot I$ where I is unit matrix.
(g) If the solution $y(x)$ of Hermite's differential equation is written as
$y(x)=\sum_{r=0}^{\infty} a_{r} x^{k+r}$, show that the allowed values of k are zero and one only.
(h) Find the Fourier series representing

$$
f(x)=x, 0<x<2 \pi
$$

4. Answer any three of the following questions: $10 \times 3=30$
(a) (i) Verify that the matrix

$$
A=\frac{1}{3}\left[\begin{array}{rrr}
1 & 2 & 2 \\
2 & 1 & -2 \\
-2 & 2 & -1
\end{array}\right] \text { is orthogonal. } 2
$$

(ii) Verify Cayley-Hamilton theorem for the matrix $A=\left[\begin{array}{ll}1 & 4 \\ 2 & 3\end{array}\right]$ and also find A^{-1}.
(b) Obtain the power series solution of the Legendre equation

$$
\left(1-x^{2}\right) \frac{d^{2} y}{d x^{2}}-2 x \frac{d y}{d x}+n(n+1) y=0
$$

(c) (i) Obtain the following orthogonality property of Legendre polynomial :

$$
\int_{-1}^{+1} P_{n}(x) P_{m}(x) d x=0 \text { for } m \neq n
$$

(ii) Show that

$$
H_{0}(x)=1 \text { and } H_{1}(x)=2 x \quad 2+2=4
$$

(d) Prove the following recurrence relations: $4+3+3=10$
(i) $n P_{n}=(2 n-1) x P_{n-1}-(n-1) P_{n-2}$
(ii) $x P_{n}^{\prime}-P_{n-1}^{\prime}=n P_{n}$
(iii) $2 x H_{n}(x)=2 n H_{n-1}(x)+H_{n+1}(x)$
(e) What is periodic function ? Express the periodic functions in a series of sine and cosine functions. What are Fourier coefficients ? Determine the Fourier coefficients. $\quad 1+1+1+7=10$
(f) (i) Using the method of separation of variables, solve :

6

$$
\frac{\partial u}{\partial x}=2 \frac{\partial u}{\partial t}+u \text {, where } u(x, 0)=6 e^{-3 x}
$$

(ii) Find the eigenvalues of the matrix

$$
A=\left[\begin{array}{rrr}
6 & -2 & 2 \tag{4}\\
-2 & 3 & -1 \\
2 & -1 & 3
\end{array}\right]
$$

(g) (i) If $H_{n}(x)$ be the polynomial of Hermite differential equation, prove that

$$
\int_{-\infty}^{+\infty} e^{-x^{2}} H_{n}^{2}(x) d x=2^{n} \sqrt{\pi} \cdot n!\quad 7
$$

(ii) Prove that the following matrix is unitary :

$$
\left[\begin{array}{ll}
\frac{1}{2}(1+i) & \frac{1}{2}(-1+i) \tag{3}\\
\frac{1}{2}(1+i) & \frac{1}{2}(1-i)
\end{array}\right]
$$

(h) Deduce the one dimensional wave equation of transversely vibrating string under tension T. Solve the equation by the method of separation of variables.

$$
7+3=10
$$

