Total number of printed pages-7

3 (Sem-1/CBCS) PHY HC 1

2021

(Held in 2022)

PHYSICS

(Honours)

Paper : PHY-HC-1016

(Mathematical Physics-I)

$$
\text { Full Marks : } 60
$$

Time : Three hours
The figures in the margin indicate full marks for the questions.

1. Answer the following questions : $1 \times 7=7$
(a) State the vector field with respect to Cartesian co-ordinate. Give one example.
(b) Show that $\vec{\nabla} \cdot \vec{r}=3$, where $\vec{r}=\hat{i} x+\hat{j} y+\hat{k} z$.
(c) Write the order and degree rof the differential equation

$$
x^{2} \frac{d^{2} y}{d x^{2}}+x \frac{d y}{d x}+y=0
$$

(d) Write the volume element in curvilinear co-ordinate.
(e) Give the value of $\int_{-\alpha}^{+\alpha} \delta(x) d x$
(f) Define variance in statistics.
(g) State the principle of least square fit.
2. Answer of the following questions:

$$
2 \times 4=8
$$

(a) Find a unit vector perpendicular to the surface, $x^{2}+y^{2}-z^{2}=11$ at the point $(4,2,3)$.
(b) If $\bar{A}=\bar{A}(t)$, then show that

$$
\frac{d}{d t}\left[\vec{A} \cdot\left(\frac{d \vec{A}}{d t} \times \frac{d^{2} \vec{A}}{d t^{2}}\right)\right]=A \cdot\left[\frac{d \bar{A}}{d t} \times \frac{d^{3} \vec{A}}{d t^{3}}\right]
$$

(c) If \vec{A} and \vec{B} are each irrotational, prove that $\vec{A} \times \vec{B}$ is solenoidal.
(d) Evaluate $\iint_{S} \hat{r} \times \hat{n} d S$, where S is a closed surface.
3. Answer any three of the following questions:
(a) Prove

$$
\iiint_{V}\left(\phi \nabla^{2} \psi-\psi \nabla^{2} \phi\right) d V=\iint_{S}(\phi \vec{\nabla} \psi-\psi \vec{\nabla} \phi) \cdot d S
$$

(b) Find the integrating factor (IF) of the following differential equation and solve it.

$$
\left(1+x^{2}\right) \frac{d y}{d x}+2 x y=\cos x
$$

(c) Express curl $\vec{A}=\vec{\nabla} \times \vec{A}$ in cylindrical co-ordinate.
(d) What is Dirac-delta function ? Show that the function

$$
\delta(x)=\lim _{\varepsilon \rightarrow 0} \frac{\sin (2 \pi \varepsilon x)}{\pi \varepsilon}
$$

is a Dirac delta function.
(e) If $\phi(x, y, z)=3 x^{2} y-y^{3} x^{2}$ be any scalar function ϕ, find out
(i) $\operatorname{grad} \phi$ at point $(1,2,2)$
(ii) unit vector é perpendicular to surface.
4. Answer any three of the following questions :

$$
10 \times 3=30
$$

(a) (i) If $F_{1}(x, y), F_{2}(x, y)$ are two continuous functions having continuous partial derivatives $\frac{\partial F_{1}}{\partial y}$ and $\frac{\partial F_{2}}{\partial x}$ over a region R bounded by simple closed curve C in the $x-y$ plane, then show that

$$
\oint_{C}\left(F_{1} d x+F_{2} d y\right)=\iint_{S}\left(\frac{\partial F_{2}}{\partial x}-\frac{\partial F_{1}}{\partial y}\right) d x d y
$$

(ii) A function $f(x)$ is defined

$$
\text { as }\left\{\begin{array}{l}
0, x<2 \\
\frac{1}{18}(2 x+3), 2 \leq x \leq 4 \\
0, x>2
\end{array}\right.
$$

Show that it is a probability density function.
(b) Solve the following differential equations :
(i) $9 \frac{d^{2} y}{d x^{2}}+12 \frac{d y}{d x}+4 y=6 e^{-2 x / 3}$
(ii) $2 \frac{\partial^{2} z}{\partial x^{2}}+5 \frac{\partial^{2} z}{\partial x \partial y}+2 \frac{\partial^{2} z}{\partial y^{2}}=0$
(c) (i) A rigid body rotates about an axis passing through the origin with angular velocity $\vec{\omega}$ and with linear velocity $\vec{v}=\vec{\omega} \times \vec{r}$, then prove that,

$$
\vec{\omega}=\frac{1}{2}(\bar{\nabla} \times \bar{v})
$$

where, $\vec{\omega}=\hat{i} \omega_{1}+\hat{j} \omega_{2}+\hat{k} \omega_{3}$

$$
\begin{equation*}
\vec{r}=\hat{i} x+\hat{j} y+\hat{k} z \tag{5}
\end{equation*}
$$

(ii) If $y=f(x+a t)+g(x-a t)$, show that it satisfies the equation

$$
\frac{\partial^{2} y}{\partial t^{2}}=a^{2} \frac{\partial^{2} y}{\partial x^{2}}
$$

where f and g are assumed to be at least twice differentiable and a is any constant.

5
(d) (i) Apply Green's theorem in plane to evaluate the integral

$$
\oint_{C}\left[\left(x y-x^{2}\right) d x+x^{2} y d y\right] \text { over the }
$$ triangle bounded by the line $y=0, x=1$ and $y=x$.

(ii) Prove that

$$
\int_{-\alpha}^{+\alpha} f(x) \delta(x-c) d x=f(c)
$$

(e) (i) Applying Gauss' theorem, evaluate

$$
\iint_{S} x d y d z+y d z d x+z d x d y, \text { where }
$$

$$
S \text { is the sphere of radius }
$$

$$
\begin{equation*}
x^{2}+y^{2}+z^{2}=1 \tag{5}
\end{equation*}
$$

(ii) Evaluate $\nabla^{2} \psi$ in spherical co-ordinate.

