Total number of printed pages-7

3 (Sem-1) MAT M 2

act rel treprendus relocate stirWorld)

(Held in 2022) Towns

MATHEMATICS

Answer St. (Major) Tol Con brief (b)

Paper: 1.2
Define the curvature of a partie of

(Calculus) no inioq

Full Marks: 80

Time: Three hours

The figures in the margin indicate full marks for the questions.

- 1. Answer the following questions: $1 \times 10 = 10$
 - What is the nth derivative of a (a) What is the nth derivative of a the a the

28

Evaluate

(c) Prove that

(b) If
$$Z = x^3 y^4 f(y/x)$$
, then find the value of $x \frac{\partial z}{\partial x} + y \frac{\partial z}{\partial y}$

- (c) Write the polar subtangent for the curve $r = a\theta$.
- (d) Find $\frac{ds}{dx}$ for the curve $y^2 = 4ax$.
- (e) Define the curvature of a curve at point on it.
- (f) What is the value of $\int_{0}^{\pi} \frac{\sin 4x}{\sin x} dx$?

The figures in the margin indicate

(g) Evaluate
$$\int_{-\pi/2}^{\pi/2} \cos x \, dx$$

(h) Write down the equation of the asymptote of the curve xy-3x-4y=0 which is parallel to the x-axis.

- (i) Write down the intrinsic equation of the catenary $y = c \cos h \left(\frac{x}{c}\right)$.
- (j) Find the surface area of the solid generated by the curve $x^2 + y^2 = a^2$. (a) If $u = \log (x^2 + y^2) + z^3 - 3xyz$
- prove that Answer the following questions: 2×5=10 2.
 - (a) If $\cos(2x+b)$ find y_n $\frac{y_n}{y_n}$
 - (b) If y = f(x+ct)+g(x-ct),
 - show that $\frac{\partial^2 y}{\partial t^2} = c^2 \frac{\partial^2 y}{\partial x^2}$
 - Trace the curve (c) Prove that $\int_{0}^{\pi} x \cos^{4} x dx = \frac{3\pi^{2}}{16}$ the curve f(x) at the point
 - (d) Show that the area 47 munded by the $-o(d) \text{ If } I_n = \int_{\Omega} tan^n x dx, \quad \text{alodaraq}$

prove that $I_n = \frac{1}{n-1} I_{n-2}$

- (e) Show that the area of a loop of the curve $r = a \cos 2\theta$ is $\frac{\pi a^2}{8}$.
- 3. Answer the following questions: 5×4=20
 - (a) If $u = log(x^3 + y^3 + z^3 3xyz)$ prove that

$$01 = 3 \times 2$$

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} = \frac{3}{(x+y+z)^2}$$
(5)

(b) Integrate
$$\int_{-\infty}^{\infty} \frac{10 + dx}{(2x + 3)\sqrt{x^2 + 3x + 2}} dx$$

(c) Trace the curve
$$y^{2}(a^{2} + x^{2}) = x^{2}(a^{2} - x^{2})$$
so your

(d) Show that the area bounded by the parabola $\sqrt{x} + \sqrt{y} = \sqrt{a}$ and the coordinate axes is $\frac{1}{6}a^2$.

Answer any two questions: 4.

- 5×2= State and prove Leibniz's theorem.
- OI (b) a Prove that isoup our una rowanA $(1-x^2)y_{n+2}-(2n+1)xy_{n+1}-n^2y_n=0$
 - where $y = (\sin^{-1} x)^2$ (c) If $u = \cos^{-1} \frac{x+y}{\sqrt{x}+\sqrt{y}}$, then prove that

- 5. Answer any two questions: 5×2=10
 - (a) State and prove Euler's theorem on homogeneous functions for two variables.
 - (b) Prove that the radius of curvature for 01-2×2 the curve y = f(x) at the point p(x,y) is given by biorize and to dignal letter astroid

$$\rho = \frac{(1+y_1^2)^{\frac{3}{2}}}{y_2} \text{ where } y_1 = \frac{dy}{dx}, y_2 = \frac{d^2y}{dx^2}$$

- (c) Find the asymptotes of the curve $y^3 + x^2y + 2xy^2 - y + 1 = 0$ Increase the state (b)
- 6. Answer any two questions: 5×2=10

(a) If
$$I_n = \int tan^n x dx$$
, $(n > 1)$

prove that
$$I_n = \frac{\tan^{n-1} x}{n-1} - I_{n-2}$$
Hence obtain $\int \tan^3 x \, dx$.

- Bar Bu Is (b) Find the surface area of the solid generated by revolving the cardioid $0 = 2 \times c$ $r = a(1 - \cos \theta)$ about the initial line.
 - (c) Examine for double points on the curve $x^2y + x^3y + 5x^4 = y^2$ 11 (1 + x2) = (14)

(b) Prove that the radius of curvature for 7. ni Answer any two questions: 5×2=10

p(x, y) is given by work (b) (a) Find the total length of the astroid

$$\frac{u^{2}b}{c_{xb}} = \frac{x^{2/3}}{c_{y}} + \frac{y^{2/3}}{c_{y}} = \frac{a^{2/3}}{c_{y}} = \frac{c_{y}^{2/3}}{c_{y}^{2/3}} = \frac{a^{2/3}}{c_{y}^{2/3}} = 0$$

- (b) Find the area included between the curve $y^2(a-x)=x^3$ and its asymptote.
- (c) Find the position and nature of the multiple points on the curve

$$x^3 + 2x^2 + 2xy - y^2 + 5x - 2y = 0$$