Total number of printed pages-7 si 181W

3 (Sem-3/CBCS) MAT HC 2

(d) Write the generators of the cyclic group E(the group 1:202gers) under ordinary

(Held in 2022) Tollibbs

(e) Show **SOITAMEHTAM** that the series into a product of 2-cycles is not unique.

Paper: MAT-HC-3026

: noitaturmed shi le seleve shi bnif (t) (Group Theory-I) order of any

Full Marks: 80= 7 order of C.

Time: Three hours

The figures in the margin indicate full marks for the questions.

1. Answer the following questions: 1×10=10

Give the condition on n under which the set $\{1, 2, 3, ..., n-1\}$, n > 1 is a group under multiplication modulo n.

(b) Define a binary operation on the set

S Main - 3-1 30%; WAT HC 1/0

 $\mathbb{R}^{n} = \{(a_{1}, a_{2}, ..., a_{n}) : a_{1}, a_{2}, ..., a_{n} \in \mathbb{R}\}$ for which it is a group.

- (c) What is the centre of the dihedral group of order 2n?
 - (d) Write the generators of the cyclic group Z (the group of integers) under ordinary addition.
 - (e) Show by an example that the decomposition of a permutation into a product of 2-cycles is not unique.
 - (f) Find the cycles of the permutation:

$$f = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 8 & 5 & 4 & 3 & 1 & 2 \end{pmatrix}$$
students because the state of the st

(g) Find the order of the permutation:

$$f = \begin{pmatrix} 1 & 2^{1} & 3^{0} & 4^{25} & 6 \\ f & 2^{1} & 3^{0} & 4^{25} & 6 \\ 2_{1} & 4_{1} & 6_{1$$

(h) Let G be the multiplicative group of all non-singular $n \times n$ matrices over $\mathbb R$ and

let R be the multiplicative group of all non-zero real numbers. Define a

homomorphism from G to \mathbb{R}^* .

- What do you mean by an isomorphism between two groups?
- onto a group Hallove that o' is (j) State the second isomorphism theorem.
- $2 \times 5 = 10$ 2. Answer the following questions: Answer the following questions:
 - (a) Let G be a group and $a \in G$. Show that represents the group and $a \in G$. Show that (a) is a subgroup of G to seri
 - If G is a finite group, then order of any (b) element of G divides the order of G. Justify whether this statement is true bas li or false sin A Drotadthwork f.D. Hola,
 - (c) Show that a group of prime order cannot have any non-trivial subgroup. Is it true for a group of finite composite to group de is normal in Grabronsevery subgroup of K is normal in G.
 - (d) Consider the mapping ϕ from the group of real numbers under addition to itself given by $\phi(x) = [x]$, the greatest integer less than or equal to x. Examine whether ϕ is a homomorphism.

Let ϕ be an isomorphism from a group G onto a group H. Prove that ϕ^{-1} is also an isomorphism from H onto G.

Answer the following questions: 5×4=20

(a) Show that a finite group of even order has at least one element of order 2.

(b) If G is a finite group, then order of any element of G divides the order of G. quorag a lo quoragdus lamron a set of M is true bna fi naileda si N/D that G. Show that G/N is abelian if

only if for all $x, y \in G$, $xyx^{-1}y^{-1} \in N$.

group G is normal in G, then every subgroup of K is normal in G.

(d) Consider the mapping \$ from the group of real numbers under addition to itself

Show that converse of Lagrange's theorem holds in case of finite cyclic groups.

(c) Consider the group $G = \{1, -1\}$ under multiplication. Define $f: \mathbb{Z} \to G$ by any tends of signature as f(x) = 1, if n is even works osly leading a large of f(x) = 1, if f(x

Let $f:G \to G'$ be a homomorphism. Let $f:G \to G'$ and $f:G \to G'$

4. Answer the following questions: 10×4=40

(a) Let G be a group and $x, y \in G$ be such that $xy^2 = y^3x$ and $yx^2 = x^3y$. Then show that x = y = e, where e is the lidentity element of G.

(c) Consider the gaorp G = (1) if under

Give an example to show that the product of two subgroups of a group is not a subgroup in general. Also show that if H and K are two subgroups of a group G, then HK is a subgroup of G if and only if HK = KH. 2+8=10

(b) Prove that the order of a cyclic group is equal to the order of its generator.

10

 $o(f(\alpha)) = m$. Prove that $o(f(\alpha))/o(\alpha)$,

and if f is one-one, then mem.

Let H be a non-empty subset of a group G. Define $H^{-1} = \{h^{-1} \in G : h \in H\}$.

Observed Show that

Hen then the subgroup of G, then the si (ii) if H and K are subgroups of G, then then the si (ii) if H and K are subgroups of G, then then $(HK)^{-1} = K^{-1}H^{-1}$.

(c) Let G be a group and Z(G) be the centre of G. If G/Z(G) is cyclic, then show that G is abelian.

Or

State and prove Lagrange's theorem.

(d) Let H and K be two normal subgroups of a group G such that $H \subseteq K$. Show

that
$$G/K \cong G/H/K/H$$
.

Or

Prove Cayley's theorem.

10