Total number of printed pages-6

3 (Sem-4/CBCS) MAT HC 3 2021

MATHEMATICS

(Honours)

Paper: MAT-HC-4036

(Ring Theory)

Full Marks: 80

Time: Three hours

The figures in the margin indicate full marks for the questions.

1. 1×6=6

- (a) Give an example of an infinite noncommutative ring with unity.
- (b) What is the characteristic of the ring $Z_3[i]$?
- (c) Find all the idempotent elements of Z_{10} .
- (d) Let $f(x) = 4x^3 + 2x^2 + x + 3$ and $g(x) = 3x^4 + 3x^3 + 3x^2 + x + 4$ where $f(x), g(x) \in Z_5[x]$. Compute f(x).g(x).

Contd.

- (c) Show that the polynomial $x^5 + 9x^4 + 12x^2 + 6$ is irreducible over Q.
- (f) Define an Euclidean Domain.

2. 2×5=10

- (a) Prove that in a ring R, a(-b)=(-a)b=-(ab) for all $a, b \in R$.
- (b) Let A and B be two ideals of a ring R. Show that $AB \subseteq A \cap B$.
- (c) If A is an ideal of a ring R and 1∈ A, then prove that A = R.
- (d) If R is a commutative ring with unity and A is an ideal of R, show that R/A is a commutative ring with unity.
- (e) Let $f(x) = x^3 + 2x + 4$ and g(x) = 3x + 2 in $Z_s(x)$. Determine the quotient and remainder upon dividing f(x) by g(x).
- 3. Answer any four parts: 6×4=24
 - (a) Let R be a commutative ring with unity and A be an ideal of R. Prove that R/A is a field if and only if A is a maximal ideal.

3 (Sem-4 /CBCS) MAT HC 3/G 2

- (b) (i) Let R be a commutative ring and A be an ideal of it. Show that the set $\{r \in R | ra = 0, \text{ for all } a \in A\}$ is an ideal of R.
 - (ii) Prove that the characteristic of an integral domain is 0 or prime.
- (c) Define a principal ideal domain. If F is a field, then show that F(x) is a principal ideal domain.
 1+5=6
 - (d) Let p be a prime and $f(x) \in Z(x)$ with $deg \ f(x) \ge 1$. Suppose $\overline{f(x)}$ be the polynomial in $Z_p[x]$ obtained from f(x) by reducing all the coefficients of f(x) modulo p. If $\overline{f(x)}$ is irreducible over over Z_p and $deg \ f(x) = deg \ \overline{f(x)}$, then prove that f(x) is irreducible over Q. Is the converse true? Justify your answer.
 - (e) Prove that in a principal ideal domain, an element is an irreducible if and only if it is a prime.
 - (f) (i) Prove that the ring of integers Z is an Euclidean Domain. 2

- (ii) Prove that every Euclidean Domain is a principal ideal domain. 4
- 4. Answer any four parts: 10×4=40
 - (a) (i) Let $Z[\sqrt{2}] = \{a+b\sqrt{2} \mid a,b\in Z\}$. Prove that $Z(\sqrt{2})$ is a ring under the ordinary addition and multiplication of real numbers.
 - (ii) Let R be a ring. Prove that $a^2 b^2 = (a + b)(a b)$ for all a, b in R if and only if R is commutative.
 - (b) (i) Define a field. Prove that a finite integral domain is a field. Hence show that for any prime p, Z_p the ring of integers modulo p, is a field. 1+5+2=8
 - (ii) Show that 0 is the only nilpotent element in an integral domain. 2
 - (c) (i) Show that $S = \{a+ib | a, b \in \mathbb{Z}, b \text{ is even} \}$ is a subring of $\mathbb{Z}[i]$ but not an ideal of $\mathbb{Z}[i]$.
 - (ii) Prove that the only ideals of a field F are { 0 } and F itself. 2

3 (Sem-4 /CBCS) MAT HC 3/G 4

https://www.assampapers.com

(iii) Show that $\frac{R[x]}{(x^2+1)}$ is a field.

4

- (d) (i) Let φ be a monomorphism from a ring R to a ring S.
 Prove that kernel of φ is an ideal of R.
 - (ii) Let ϕ be a homomorphism from a ring R to a ring S. Prove that $\frac{R}{K_{CP}} \geq \phi(R)$.
- (e) (i) If ϕ is an isomorphism from a ring R to a ring S, then show that ϕ^{-1} is an isomorphism from S to R.

5

(ii) Let R be a ring with unity e. Prove that the mapping $\phi: Z \rightarrow R$ given by $n \rightarrow ne$ is a ring homomorphism.

3 (Sem-4 /CBCS) MAT HC 3/G 5

Contd.

(f) Let F be a field and let f(x) and g(x) ∈ F[x] with g(x) ≠ 0. Prove that there exist unique polynomials q(x) and r(x) in F(x) such that f(x) = g(x)q(x)+r(x) and either r(x) = 0 or deg r(z) < deg g(x). Hence show that if a ∈ F and f(x) ∈ F[x], then f(a) is the remainder in the division of f(x) by x-a.</p>

7+3-10
