3 (Sem-5 /CBCS) MAT HC 2

2021

(Held in 2022)

MATHEMATICS

(Honours)

Paper: MAT-HC-5026

(Linear Algebra)

Full Marks: 80

Time: Three hours

The figures in the margin indicate full marks for the questions.

- 1. Answer the following as directed: 1×10=10
 - (i) Is $\mathbb{R}^2(\mathbb{R})$ is a subspace of $\mathbb{R}^3(\mathbb{R})$?
 - (ii) Let A be a 5×4 matrix. If null space of A is a subspace of \mathbb{R}^k then what is k?
- (iii) Let S be a subset of a vector space V(F) and S contains zero vector of V. Then S is
 - (A) linearly independent
 - (B) linearly dependent

- (C) Both linearly independent and linearly dependent
- (D) None of the above (Choose the correct option)
- (iv) Write the standard basis of the vector space of polynomial in x with real coefficient of degree ≤ 3 .
- (v) "The eigenvalues of a triangular matrix are the entries on its main diagonal." (State True or False)
- (vi) Define inner product on \mathbb{R}^n .
- (vii) Which vector is orthogonal to every vector in \mathbb{R}^n ?
- (viii) How do you explain $\dim W = 1$ geometrically where W is a subspace of the vector space $\mathbb{R}^3(\mathbb{R})$?

(ix) Let A be the 4 × 4 real matrix,

$$A = \begin{bmatrix} 1 & 2 & 0 & 0 \\ -1 & 1 & 0 & 0 \\ 2 & -2 & -2 & 0 \\ 1 & 1 & -2 & 1 \end{bmatrix}$$

Then the characteristic polynomial for A is

(A)
$$x^2(x-1)^2$$

(B)
$$(x-1)^2(x+1)^2$$

(C) $x^2(x+1)^2$

(C)
$$x^2(x+1)^2$$

- (D) None of the above (Choose the correct option)
- What do you mean by the length of (x) a vector in \mathbb{R}^n ?
- Answer the following questions: 2×5=10 2.
 - Let V be the vector space of all (i) functions from the real field \mathbb{R} to \mathbb{R} . Show that $W = \{f : f(7) = 2 + f(1)\}$ is not a subspace of V.
 - Show that every subset of an (ii) independent set is independent.

- (iii) Let $A = \begin{bmatrix} 1 & 6 \\ 5 & 2 \end{bmatrix}$ and $v = \begin{bmatrix} 3 \\ -2 \end{bmatrix}$. Is v a eigenvector of A?
- (iv) Let T be the linear operator on \mathbb{R}^3 defined by T(a,b,c)=(a+b,b+c,0). Show that the xy-plane = $\{(x,y,0): x,y \in \mathbb{R}\}$ is T-invariant subspace of \mathbb{R}^3 .
- (v) Let $y = \begin{bmatrix} 7 \\ 6 \end{bmatrix}$ and $u = \begin{bmatrix} 4 \\ 2 \end{bmatrix}$. Find the orthogonal projection of y onto u.
- 3. Answer any four questions: 5×4=20
 - (i) Prove that the non-zero vectors $v_1, v_2,, v_n$ are linearly dependent if and only if one of them is a linear combination of the preceding vectors.
 - (ii) Let $v_1, v_2, ..., v_n$ be non-zero eigenvectors of an operator $T: V \to V$ corresponding to distinct eigenvalues $\lambda_1, \lambda_2, ..., \lambda_n$. Prove that $v_1, v_2, ..., v_n$ are linearly independent.

- (iii) Let A and B be two similar matrices of order $n \times n$. Prove that A and B have same characteristic polynomial and hence the same eigenvalues.
- (iv) Let $A = \begin{pmatrix} 2 & 1 & 0 \\ 0 & 1 & -1 \\ 0 & 2 & 4 \end{pmatrix}$. An eigenvalue of

A is 2. Find a basis for the corresponding eigenspace.

- (v) Let $A = \begin{bmatrix} 7 & 2 \\ -4 & 1 \end{bmatrix}$. Find a formula for A^2 , given that $A = PDP^{-1}$ where $P = \begin{bmatrix} 1 & 1 \\ -1 & -2 \end{bmatrix}$ and $D = \begin{bmatrix} 5 & 0 \\ 0 & 3 \end{bmatrix}$.
- (vi) Define orthogonal set. If $S = \{u_1, u_2, ..., u_p\}$ is an orthogonal set of non-zero vectors in \mathbb{R}^n , then prove that S is linearly independent and hence is a basis for the subspace spanned by S.

4. (i) If a vector space V has a basis $B = \{v_1, v_2, ..., v_n\}$, then prove that any set in V containing more than n vectors must be linearly dependent. Also show that every basis of V must consist of exactly n vectors. 5+5=10

OR

Let U and V be vector spaces over the same field. Let $\{u_1, u_2, \ldots, u_n\}$ be a basis of U and let v_1, v_2, \ldots, v_n be any arbitrary vectors in V. Prove that there exists a unique linear mapping $f: U \to V$ such that

$$f(u_1) = v_1, f(u_2) = v_2, ..., f(u_n) = v_n$$
 10

(ii) Find the eigenvalues and eigenvectors

of
$$A = \begin{bmatrix} 5 & 4 \\ 1 & 2 \end{bmatrix}$$
.

OR

State Cayley-Hamilton theorem for matrices. Use it to express $2A^5 - 3A^4 - A^2 - 4I$ as a linear polynomial in A, when $A = \begin{bmatrix} 3 & 1 \\ -1 & 2 \end{bmatrix}$.

(iii) Let T be the linear operator on
$$\mathbb{R}^3$$
, defined by
$$T(x,y,z) = (2y+z, x-4y, 3x)$$

- (a) Find the matrix of T in the basis $\{e_1 = (1,1,1), e_2 = (1,1,0), e_3 = (1,0,0)\}$
- (b) Verify that $[T]_e[v]_e = [T(v)]_e$ for any vector $v \in \mathbb{R}^3$. 4+6=10

OR

An $n \times n$ matrix A is diagonalizable if and only if A has n linearly independent eigen-vectors.

(iv) Define orthonormal set and orthonormal basis in \mathbb{R}^n . Show that $\{u_1, u_2, u_3\}$ is an orthonormal basis of \mathbb{R}^3 , where

$$u_{1} = \begin{bmatrix} 3/\sqrt{11} \\ 1/\sqrt{11} \\ 1/\sqrt{11} \end{bmatrix}, \quad u_{2} = \begin{bmatrix} -1/\sqrt{6} \\ 2/\sqrt{6} \\ 1/\sqrt{6} \end{bmatrix}, \quad u_{3} = \begin{bmatrix} -1/\sqrt{66} \\ -4/\sqrt{66} \\ 7/\sqrt{66} \end{bmatrix}$$

$$1+1+8=10$$

Define inner product space. Show that the following is an inner product in \mathbb{R}^2 :

$$\langle u, v \rangle = x_1 y_1 - x_1 y_2 - x_2 y_1 + 3x_2 y_2$$

where $u = (x_1, x_2), v = (y_1, y_2).$
Also show that for all u, v in \mathbb{R}^2

$$||u+v|| \le ||u|| + ||v||$$
 $2+5+3=10$

we test by comment and a first