Total number of printed pages-8

3 (Sem-4/CBCS) MAT HC 1

2022

MATHEMATICS

(Honours)
Paper : MAT-HC-4016
(Multivariate Calculus)
Full Marks : 80
Time : Three hours
The figures in the margin indicate full marks for the questions.

1. Answer any ten:
$1 \times 10=10$
(i) Find the domain of $f(x, y)=\frac{1}{\sqrt{x-y}}$.
(ii) How is directional derivative of a function at a point related to the gradient of the function at that point?
(iii) Define harmonic function?
(iv) Define $\iint_{R} f(x, y) d A$.

Contd.
(v) Write the value of $\vec{\nabla}\left(f^{n}\right)$.
(vi) Define critical point.
(vii) Define relative extrema for a function of two variables.
(viii) When is a curve said to be positively oriented?
(ix) Describe the fundamental theorem of line integral.
(x) When is a surface said to be smooth ?
(xi) Compute $\int_{1}^{4} \int_{-2}^{3} \int_{2}^{5} d x d y d z$.
(xii) Evaluate $\underset{(x, y) \rightarrow(i, 3)}{\operatorname{Lt}} \frac{x-y}{x+y}$.
(xiii) If $f(x, y)=x^{3} y+x^{2} y^{2}$, find f_{x}.
(xiv) When is a line integral said to be path independent?
(xv) Explain the difference between $\int_{C} f d s$ and $\int_{C} f d x$.
2. Answer any five questions : $\quad 2 \times 5=10$
(a) Sketch the level surface $f(x, y, z)=c$ if $(x, y, z)=y^{2}+z^{2}$ for $c=1$.
(b) Determine f_{x} and f_{y} for

$$
f(x, y)=x y^{2} \ln (x+y)
$$

(c) Find $\frac{\partial w}{\partial t}$ if $w=\ln \left(x+2 y-z^{2}\right)$ and

$$
x=2 t-1, y=\frac{1}{t}, z=\sqrt{t}
$$

(d) Evaluate $\int_{1}^{2} \int_{0}^{\pi} x \cos y d y d x$.
(e) Evaluate $\operatorname{Lim}_{(x, y) \rightarrow(0,0)} \frac{x^{2}+x-x y-y}{x-y}$.
(f) Define line integral over a smooth curve.
(g) Find the Jacobian $\frac{\partial(x, y)}{\partial(u, v)}$ when

$$
x=u+2 v, y=3 u-4 v .
$$

(h) Using polar coordinates find the limit $\operatorname{Lim}_{(x, y) \rightarrow(0,0)} \frac{\tan \left(x^{2}+y^{2}\right)}{x^{2}+y^{2}}$.
3. Answer any four:
(a) Describe the graph of the function

$$
f(x, y)=1-x-\frac{1}{2} y
$$

(b) Use the method of Lagrange's multipliers to find the maximum and minimum values of $f(x, y)=1-x^{2}-y^{2}$ subject to the constraints $x+y=1$ with $x \geq 0, y \geq 0$.
(c) Evaluate $\int_{C}\left[(y-x) d x+x^{2} y d y\right]$, where C is the curve defined by $y^{2}=x^{3}$ from $(1,-1)$ to $(1,1)$.
(d) Examine the continuity of the following function at the origin:

$$
f(x, y)=\left\{\begin{array}{c}
\frac{x^{2}-y^{2}}{x^{2}+y^{2}},(x, y) \neq(0,0) \\
0 \quad,(x, y)=(0,0)
\end{array}\right.
$$

(e) Find $\frac{\partial w}{\partial s}$ if $w=4 x+y^{2}+z^{3}$ where $x=e^{r s^{2}}, \quad y=\ln \frac{r+s}{t}$ and $z=r s t^{2}$.
(f) Suppose the function f is differentiable at the point P_{0} and that the gradient at P_{0} satisfies $\Delta f_{0} \neq 0$. Show that Δf_{0} is orthogonal to the level surface of f through P_{0}.
(g) Compute $\iint_{D}\left(\frac{x-y}{x+y}\right)^{4} d y d x$ where D is the triangular region bounded by the line $x+y=1$ and the coordinate axes, using change of variables $u=x-y$, $v=x+y$.
(h) Find the absolute extrema of $f(x, y)=2 x^{2}-y^{2} \quad$ on the closed bounded set S, where S is the disk $x^{2}+y^{2} \leq 1$.
4. Answer any four questions: $10 \times 4=40$
(a) The radius and height of a right circular cone are measured with errors of at most 3% and 2% respectively. Use increments to approximate the maximum possible percentage error in computing the volume of the cone using these measurements and the formula $V=\frac{1}{3} \pi R^{2} H$.
(b) Let $f(x, y)= \begin{cases}x y\left(\frac{x^{2}-y^{2}}{x^{2}+y^{2}}\right),(x, y) \neq(0,0) \\ 0 \quad,(x, y)=(0,0)\end{cases}$ Show that $f_{x}(0, y)=-y$ and $f_{x}(x, 0)=x$ for all x and y. Then show that $f_{x y}(0,0)=-1$ and $f_{y x}(0,0)=1$.
(c) (i) Find the directional derivative of

$$
\begin{aligned}
& f(x, y)=\ln \left(x^{2}+y^{3}\right) \text { at } \\
& P_{0}(1,-3) \text { in the direction of } \\
& \vec{v}=2 i-3 j .
\end{aligned}
$$

(ii) In what direction is the function defined by $f(x, y)=x e^{2 y-x}$ increasing most rapidly at the point $P_{0}(2,1)$, and what is the maximum rate of increase? In what direction is f decreasing most rapidly?
(d) When two resistances R_{1} and R_{2} are connected in parallel, the total resistance R satisfies $\frac{1}{R}=\frac{1}{R_{1}}+\frac{1}{R_{2}}$. If R_{1} is measured as 300 ohms with maximum error of 2% and R_{2} is measured as 500 ohms with a maximum error of 3%, what is the maximum percentage error in R ?
(e) Verify the vector field $\vec{F}=\left(e^{x} \sin y-y\right) i+\left(e^{x} \cos y-x-2\right) j$ is conservative. Also find the scalar potential function f for \vec{F}.
(f) (i) Evaluate $\iiint_{D} \frac{d x d y d z}{\sqrt{x^{2}+y^{2}+z^{2}}}$ where D is the solid sphere $x^{2}+y^{2}+z^{2} \leq 3$.
(ii) Find the volume of the solid D, where D is bounded by the paraboloid $z=1-4\left(x^{2}+y^{2}\right)$ the $x y$-plane.
(g) (i) Use a polar double integral to show that a sphere of radius a has volume $\frac{4}{3} \pi a^{3}$.
(ii) Evaluate $\int_{0}^{3} \int_{0}^{\sqrt{9-x^{2}}} x d y d x$ by converting to polar coordinates.
(h) State Green's theorem. Verify Green's theorem for the line integral
$\oint_{C}\left(y^{2} d x+x^{2} d y\right)$ where C is the square having vertices $(0,0),(1,0),(1,1)$ and $(0,1)$.
(i) State Stokes' theorem. Using Stokes' theorem evaluate the line integral $\oint\left(x^{3} y^{2} d x+d y+z^{2} d z\right)$, where C is the circle $x^{2}+y^{2}=1$ and in the plane $z=1$, counterclockwise when viewed from the origin.
(j) A container in R^{3} has the shape of the cube given by $0 \leq x \leq 1,0 \leq y \leq 1$, $0 \leq z \leq 1$. A plate is placed in the container in such a way that it occupies that portion of the plane $x+y+z=1$ that lies in the cubical container. If the container is heated so that the temperature at each point (x, y, z) is given by $T(x, y, z)=4-2 x^{2}-y^{2}-z^{2}$ in hundreds of degrees Celsius, what are the hottest and coldest points on the plate? You may assume these extreme temperatures exist.

