3 (Sem-2/CBCS) MAT HC 1

2023

MATHEMATICS

(Honours Core)

Paper: MAT-HC-2016

(Real Analysis)

Full Marks: 80

Time: Three hours

The figures in the margin indicate full marks for the questions.

- 1. Answer the following questions as directed: 1×10=10
 - (a) Give an example of a set which is not bounded below.
 - (b) Write the completeness property of \mathbb{R} .
 - (c) If $S = \left\{ \frac{1}{n} : n \in \mathbb{N} \right\}$, then what will be inf S?

(d) The unit interval [0,1] in \mathbb{R} is not countable.

(State whether True or False)

- (e) Define a convergent sequence of real numbers.
- (f) What is the limit of the sequence. $\{x_n\}$,

Memorine Cong

where
$$x_n = \frac{5n+2}{n+1}$$
, $n \in \mathbb{N}$?

- (g) A bounded monotone sequence of real numbers is convergent.

 (State whether True or False)
- (h) What is the value of r if the geometric

Answer the following questions a

series
$$\sum_{n=0}^{\infty} r^n$$
 is convergent?

(i) The series
$$1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \dots$$
 is not

convergent.

(State whether True or False)

- If $\sum_{n=1}^{\infty} u_n$ is a positive term series such (j)
 - that $\lim_{n\to\infty} (u_n)^{1/n} = l$, then the series converges, if
- (i) l < 1(ii) 0 < l < 2where l > 1(iii) l > 1(iii) l > 1(iii) l > 1

 - (iv) $1 \le l \le 2$ indicates M = m

(Choose the correct option)

- then show that there exists an irrational 2×5=10 Answer the following questions:
 - Find the supremum of the set $S = \left\{ x \in \mathbb{R} : x^2 - 3x + 2 < 0 \right\}.$
- original (y_n) and (y_n) are convergent sequences of real numbers and $x_n \le y_n \ \forall \ n \in \mathbb{N}$, then show that

$$\lim_{n\to\infty}x_n\leq \lim_{n\to\infty}y_n.$$

Show that the sequence $(-1)^n$ is (c) divergent.

- (d) Define absolutely convergent series and give an example.
 - (e) Show that the series $\sum_{n=1}^{\infty} \frac{1}{n^2 + n}$ is convergent.
- 3. Answer *any four* questions: 5×4=20
 - (a) Prove that if $x \in \mathbb{R}$, then there exists $n_x \in \mathbb{N}$ such that $x \le n_x$.
 - (b) If x and y are real numbers with x < y, then show that there exists an irrational number z such that x < z < y.
 - (c) Show that if a sequence (x_n) of real numbers converges to a real number x, then any subsequence of (x_n) also converges to x.
 - (d) Show that the sequence $\left((-1)^n + \frac{1}{n}\right)$, $n \in \mathbb{N}$ is not a Cauchy sequence.

THE DE TAMES NOT BE MADE

- (e) Using ratio test establish the convergence or divergence of the series whose *n*th term is $\frac{n!}{n^n}$.
 - (f) Let $z = (z_n)$ be a decreasing sequence of strictly positive numbers with $\lim(z_n) = 0$. Prove that the alternating series $\sum (-1)^{n+1} z_n$ is convergent.
- 4. Answer the following questions: $10\times4=40$
 - (a) Prove that the set \mathbb{R} of real numbers is not countable.

sequence o Cauchy sequ

If S is a subset of \mathbb{R} that contains at least two points and has the property: if $x, y \in S$ and x < y, then $[x, y] \subseteq S$, then show that S is an interval.

(b) Prove that a sequence of real numbers is convergent if and only if it is a Cauchy sequence.

MS

Let (x_n) be a sequence of positive real numbers such that $L = \lim_{n \to \infty} \frac{x_{n+1}}{x_n}$ exists. be a decreasing sequence If L < 1, then show that (x_n) converges and $\lim x_n = 0$. $\lim(z_{-})=0$. Prove $\lim \leftarrow n$ he alternative

- (c) (i) Show that $\lim_{n \to \infty} \left(\frac{1}{n^2 + 1} \right) = 0$ 2½
- wer the following questions: 10x4=40 Show that the sequence $\left(\frac{1}{n}\right)$ cracimu (ii) 2½ Cauchy sequence.
 - (iii) Prove that every contractive sequence is a Cauchy sequence. 5

If S is a sub no of A that contains at

State and prove the monotone subsequence theorem. 10

then show that S is an interval. (d) Prove that a positive term series $\sum_{n=1}^{\infty} \frac{1}{n^p}$ is convergent if p > 1 and divergent if 0 .

Show that a necessary condition for convergence of an infinite series $\sum_{n=1}^{\infty} x_n$

convergence of an infinite series $\sum_{n=1}^{\infty} u_n$

is that $\lim_{n\to\infty} u_n = 0$. Demonstrate by an example that this is not a sufficient condition for the convergence.