3 (Sem-6/CBCS) MAT HC 1 (N/O)

2023

MATHEMATICS

(Honours Core)

Paper: MAT-HC-6016

(New Syllabus/Old Syllabus)

Full Marks: 80/60

Time: Three hours

The figures in the margin indicate full marks for the questions.

New Syllabus

Full Marks: 80

(Riemann Integration and Metric Spaces)

1. Answer the following as directed:

 $1 \times 10 = 10$

(a) Define the discrete metric d on a non-empty set X.

Contd.

- (b) Let F_1 and F_2 be two subsets of a metric space (X, d). Then
 - (i) $\overline{F_1 \cup F_2} = \overline{F_1} \cap \overline{F_2}$
 - (ii) $\overline{F_1 \cup F_2} = \overline{F_1} \cup \overline{F_2}$
 - (iii) $\overline{F_1 \cap F_2} = \overline{F_1} \cap \overline{F_2}$
 - (iv) $\overline{F_1 \cap F_2} = \overline{F_1} \cup \overline{F_2}$

(Choose the correct option)

- (c) Let (X, d) be a metric space and $A \subset X$. Then
 - (i) Int A is the largest open set contained in A.
 - (ii) Int A is the largest open set containing A.
 - (iii) Int A is the intersection of all open sets contained in A.
 - (iv) Int A = A

(Choose the correct option)

(d) Let (X, d) be a disconnected metric space.

We have the statements:

- I. There exists two non-empty disjoint subsets A and B, both open in X, such that $X = A \cup B$.
- II. There exists two non-empty disjoint subsets A and B, both closed in X, such that $X = A \cup B$.
 - (i) Only I is true
 - (ii) Only II is true
 - (iii) Both I and II are true
 - (iv) None of I and II is true

 (Choose the correct option)
- (e) Find the limit points of the set of rational numbers Q in the usual metric R_u .
- (f) In a metric space, the intersection of infinite number of open sets need not be open. Justify it with an example.
- (g) Define a mapping $f: X \to Y$, so that the metric spaces X = [0,1] and Y = [0,2] with usual absolute value metric are homeomorphic.

- (h) Define Riemann sum of f for the tagged partition (P, t).
- (i) State the first fundamental theorem of calculus.
- (j) Examine the existence of improper Riemann integral

$$\int_{-\infty}^{\infty} \frac{dx}{1+x^2}$$

- 2. Answer the following questions: $2\times5=10$
 - (a) Prove that in a metric space (X, d) every open ball is an open set.
 - (b) Prove that the function $f:[0,1] \to R$ defined by $f(x) = x^2$ is an uniformly continuous mapping.
 - (c) Let d_1 and d_2 be two matrices on a non-empty set X. Prove that they are equivalent if there exists a constant K such that

$$\frac{1}{K}d_2(x,y) \leq d_1(x,y) \leq Kd_2(x,y)$$

- (d) If m is a positive integer, prove that m+1=m!
- (e) Let f(x) = x on [0,1]. Let $P = \left\{ x_i = \frac{i}{4}, i = 0, \dots 4 \right\}$ Find L(f, P) and U(f, P).
- 3. Answer the following questions (any four): 5×4=20
 - (a) Let (X, d) be metric space and F be a subset of X. Prove the F is closed in X if and only if F^c is open.
 - (b) Define diameter of a non-empty bounded subset of a metric space (X, d). If A is a subset of a metric space (X, d), then prove that $d(A) = d(\overline{A})$.
 - (c) Let (X, d) be a metric space. Then prove that the following statements are equivalent:
 - (i) (X, d) is disconnected.
 - (ii) There exists two non-empty disjoint subsets A and B, both open in X, such that $X = A \cup B$.

- (d) Let $f, g : [a, b] \to R$ be integrable functions. Then prove that f + g is integrable and $\int_a^b (f+g)(x) dx = \int_a^b f(x) dx + \int_a^b g(x) dx$
- (e) Discuss the convergence of the integral $\int_{1}^{\infty} \frac{1}{x^{p}} dx$ for various values of p.
- (f) Consider $f:[0,1] \to R$ defined by $f(x) = x^2$. Prove that f is integrable.
- 4. Answer the following questions: $10\times4=40$
 - (a) (i) Let X be the set of all bounded sequences of numbers $\{x_i\}_{i\geq 1}$ such that $\sup_i |x_i| < \infty$.

 For $x = \{x_i\}_{i\geq 1}$ and $y = \{y_i\}_{i\geq 1}$ in X define $d(x, y) = \sup_i |x_i y_i|$.

 Prove that d is a metric on X.
 - (ii) Prove that a convergent sequence in a metric space is a Cauchy sequence. Is the converse, true?

 Justify with an example. 4+1=5

- (a) (i) Show that $d(x, y) = \sqrt{|x-y|}$ defines a metric on the set of reals.
 - (ii) Show that the metric space $X = \mathbb{R}^n$ with the metric given by $d_p(x, y) = \left(\sum |x_i y_i|^p\right)^{1/p}, \quad p \ge 1$ where $x = (x_1, x_2, \dots, x_n)$ and $y = (y_1, y_2, \dots, y_n)$ are in \mathbb{R}^n is a complete metric space.
 - (b) (i) Let (X, d_X) and (Y, d_Y) be two metric spaces and $f: X \to Y$. If f is continuous on X, prove the following: 3+3=6
 - (i) $\overline{f^{-1}(B)} \subseteq f^{-1}(\overline{B})$ for all subsets of B of Y
 - (ii) $f(\overline{A}) \subseteq \overline{f(A)}$ for all subsets A of X
 - (ii) Let (X, d_X) and (Y, d_Y) be two metric spaces and $f: X \to Y$ be uniformly continuous. Prove that if $\{x_n\}_{n\geq 1}$ is a Cauchy sequence in X, then $\{f(x_n)\}_{n\geq 1}$ is a Cauchy sequence in Y.

- (b) Define fixed point of a mapping $T: X \to X$. Let $T: X \to X$ be a contraction of the complete metric space (X, d). Prove that T has a unique fixed point. 2+8=10
- (c) (i) Prove that if the metric space (X, d) is disconnected, then there exists a continuous mapping of (X, d) onto the discrete two element space (X_0, d_0) .
 - (ii) Let (X, d) be a metric space and A^0 , B^0 are interiors of the subsets A and B respectively. Prove that

$$(A \cap B)^0 = A^0 \cap B^0;$$

$$(A \cup B)^0 \supseteq A^0 \cup B^0.$$
 5

Or

(c) (i) When is a non-empty subset Y of a metric space (X, d) said to be connected? Let (X, d_X) be a connected metric space and $f:(X, d_X) \rightarrow (Y, d_Y)$ be a continuous mapping. Prove that the space f(X) with the metric induced from Y is connected. 5

- (ii) Let (X, d) be a metric space and $Y \subseteq X$. If X is separable then prove that Y with the induced metric is also separable.
- (d) (i) If f is Riemann integrable on [a, b] then prove that it is bounded on [a, b].
 - (ii) When is an improper Riemann integral said to exist? Show that the improper integral of $f(x) = |x|^{-1/2}$ exists on [-1,1] and its value is 4. 1+4=5

Or

(d) (i) Let $f: [a, b] \to R$ be integrable. Then prove that the indefinite integral $F(x) = \int_a^x f(t)dt$ is continuous on [a, b].

Further prove that if f is continuous at $x \in [a, b]$, then F is differentiable at x and F'(x) = f(x).

(ii) Evaluate

$$\lim_{x \to \infty} \frac{\sqrt{1 + \sqrt{2} + \dots + \sqrt{n}}}{\sqrt{n^3}} = \frac{2}{3}$$