## PROGRAMME AND COURSE OUTCOMES (CBCS)

OF



## **DEPARTMENT OF MATHEMATICS**

## **S. B. DEORAH COLLEGE**

**ULUBARI GUWAHATI-07** 

| DEPARTMENT OF MATHEMATICS     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
|-------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|                               | B.Sc (Mathematics) General and Honours                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| Programme<br>Specific Outcome | The completion of the Programme shall enable a student to:<br>PO1. Communicate mathematics effectively by oral, written,<br>computational and graphic means.<br>PO2. Create mathematical ideas from basic axioms.<br>PO3. Gauge the hypothesis, theories, techniques and proofs<br>provisionally.<br>PO4. Utilize mathematics to solve theoretical and applied problems by<br>critical understanding, analysis and synthesis.<br>PO5. Identify applications of mathematics in other disciplines and in<br>the real world, leading to enhancement of career prospects in a plethora<br>of fields.<br>PO6. Appreciate the requirement of lifelong learning through continued<br>education and research. |  |  |

| Course Outcomes of B.Sc (Mathematics) General and Honours |                 |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|-----------------------------------------------------------|-----------------|-------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Semester                                                  | Course Category | Paper Code and<br>Course Name | Outcomes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 1 <sup>st</sup>                                           | Honours         | MAT-HC-1016<br>Calculus       | This course will enable the students<br>to:<br>i) Learn first and second derivative<br>tests for relative extremum and<br>apply the knowledge in problems in<br>business, economics and life<br>sciences.<br>ii) Sketch curves in a plane using its<br>mathematical properties in different<br>coordinate systems.<br>iii) Compute area of surfaces of<br>revolution and the volume of solids<br>by integrating over cross-sectional<br>areas.<br>iv) Understand the calculus of<br>vector functions and its use to<br>develop the basic principles of<br>planetary motion. |

|                     | Honours         | MAT-HC-1026<br>Algebra         | This course will enable the students<br>to:<br>i) Employ De Moivre's theorem in<br>a number of applications to solve<br>numerical problems.<br>ii) Learn about equivalent classes<br>and cardinality of a set.<br>iii) Use modular arithmetic and<br>basic properties of congruences.<br>iv) Recognize consistent and<br>inconsistent systems of linear<br>equations by the row eMATlon<br>form of the augmented matrix.<br>v) Learn about the solution sets of<br>linear systems using matrix method<br>and Cramer's rule.                                                                   |
|---------------------|-----------------|--------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                     | Generic/Regular | MAT-HG/RC-<br>1016<br>Calculus | The students who take this course<br>will be able to:<br>i) Understand continuity and<br>differentiability in terms of limits.<br>ii) Describe asymptotic behavior in<br>terms of limits involving infinity.<br>iii) Use derivatives to explore the<br>behavior of a given function,<br>locating and classifying its extrema,<br>and graphing the function.<br>iv) Understand the importance of<br>mean value theorems.                                                                                                                                                                       |
| 2 <sup>nd</sup> Sem | Honours         | MAT-HC-2016:<br>Real Analysis  | <ul> <li>i) Understand many properties of<br/>the real line R, including<br/>completeness and Archimedean<br/>properties.</li> <li>ii) Learn to define sequences in<br/>terms of functions from N to a<br/>subset of R.</li> <li>iii) Recognize bounded,<br/>convergent, divergent, Cauchy and<br/>monotonic sequences and to<br/>calculate their limit<br/>superior, limit inferior, and the limit<br/>of a bounded sequence.</li> <li>iv) Apply the ratio, root, alternating<br/>series and limit comparison tests for<br/>convergence of an infinite series of<br/>real numbers</li> </ul> |

| Honours         | MAT-HC-2026:<br>Differential<br>Equations  | <ul> <li>i) Learn basics of differential equations and mathematical modeling.</li> <li>ii) Formulate differential equations for various mathematical models.</li> <li>iii) Solve first order non-linear differential equations and linear differential equations of higher order using various techniques.</li> <li>iv) Apply these techniques to solve and analyze various mathematical models.</li> </ul>                                                                                                                                                                                                                                                                                                                        |
|-----------------|--------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Generic/Regular | MAT-HG-<br>2016/MAT-RC-<br>2016<br>Algebra | <ul> <li>i) Learn how to solve the cubic and biquadratic equations, also learn about symmetric functions of the roots for cubic and biquadratic</li> <li>ii) Employ De Moivre's theorem in a number of applications to solve numerical problems.</li> <li>iii) Recognize consistent and inconsistent systems of linear equations by the row echelon form of the augmented matrix. Finding inverse of a matrix with the help of Cayley-Hamilton theorem</li> <li>iv) Recognize the mathematical objects that are groups, and classify them as abelian, cyclic and permutation groups, ring etc.</li> <li>v) Learn about the concept of linear independence of vectors over a field, and the dimension of a vector space.</li> </ul> |

|                     |         |                                             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|---------------------|---------|---------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3 <sup>rd</sup> Sem | Honours | MAT-HC-3016:<br>Theory of Real<br>Functions | <ul> <li>to:</li> <li>i) Have a rigorous understanding of<br/>the concept of limit of a function.</li> <li>ii) Learn about continuity and<br/>uniform continuity of functions<br/>defined on intervals.</li> <li>iii) Understand geometrical<br/>properties of continuous functions<br/>on closed and bounded intervals.</li> <li>iv) Learn extensively about the<br/>concept of differentiability using<br/>limits, leading to a better<br/>understanding for applications.</li> <li>v) Know about applications of mean<br/>value theorems and Taylor's<br/>theorem.</li> </ul>                     |
|                     | Honours | MAT-HC-3026:<br>Group Theory - I            | The course will enable the students<br>to:<br>i) Recognize the mathematical<br>objects that are groups, and classify<br>them as abelian, cyclic and<br>permutation groups, etc.<br>ii) Link the fundamental concepts of<br>groups and symmetrical figures.<br>iii) Analyze the subgroups of cyclic<br>groups and classify subgroups of<br>cyclic groups.<br>iv) Explain the significance of the<br>notion of cosets, normal subgroups<br>and factor groups.<br>v) Learn about Lagrange's theorem<br>and Fermat's Little theorem.<br>vi) Know about group<br>homomorphisms and group<br>isomorphisms. |
|                     | Honours | MAT-HC-3036:<br>Analytical<br>Geometry      | <ul> <li>This course will enable the students to:</li> <li>i) Learn conic sections and transform co-ordinate systems.</li> <li>ii) Learn polar equation of a conic, tangent, normal and properties.</li> <li>iii) Have a rigorous understanding of the concept of three dimensional coordinates systems.</li> </ul>                                                                                                                                                                                                                                                                                  |

|     | Generic/Regular                | MAT-HG-<br>3016/MAT-RC-<br>3016<br>Differential<br>Equations | The course will enable the students<br>to:<br>i) Learn basics of differential<br>equations and mathematical<br>modelling.<br>ii) Solve first order non-linear<br>differential equations and linear<br>differential equations of higher<br>order using various techniques                                                                                                                                                                                                                                 |
|-----|--------------------------------|--------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     | Skill<br>Enhancement<br>Course | MAT-SE-3024:<br>Combinatorics and<br>Graph Theory            | This course will enable the students<br>to:<br>i) Learn about the counting<br>principles, permutations and<br>combinations, Pigeonhole<br>principle.<br>ii) Understand the basics of graph<br>theory and learn about social<br>networks, Eulerian and Hamiltonian<br>graphs, diagram tracing puzzles and<br>Knight's tour problem.                                                                                                                                                                       |
| 4th | Honours                        | MAT-HC-4016:<br>Multivariate<br>Calculus                     | <ul> <li>This course will enable the students to:</li> <li>i) Learn the conceptual variations when advancing in calculus from one variable to multivariable discussion.</li> <li>ii) Understand the maximization and minimization of multivariable functions subject to the given constraints.</li> <li>iii) Learn about inter-relationship amongst the line integral, double and triple integral formulations.</li> <li>iv) Familiarize with Green's, Stokes' and Gauss divergence theorems.</li> </ul> |
|     | Honours                        | MAT-HC-4026:<br>Numerical<br>Methods                         | The course will enable the students<br>to:<br>i) Learn some numerical methods to<br>find the zeroes of nonlinear<br>functions of a single variable and<br>solution of a<br>system of linear equations, up to a<br>certain given level of precision.<br>ii) Know about methods to solve<br>system of linear equations, such as                                                                                                                                                                            |

| Honours         | MAT-HC-4036:<br>Ring Theory                   | <ul> <li>False position method, Fixed point iteration method, Newton's method, Secant method and LU decomposition.</li> <li>iii) Interpolation techniques to compute the values for a tabulated function at points not in the table.</li> <li>iv) Applications of numerical differentiation and integration to convert differential equations into difference equations for numerical solutions.</li> <li>On completion of this course, the student will be able to: <ul> <li>i) Appreciate the significance of unique factorization in rings and integral domains.</li> <li>ii) Learn about the fundamental concept of rings, integral domains and fields.</li> <li>iii) Know about ring homomorphism and isomorphism theorems of rings.</li> </ul> </li> </ul> |
|-----------------|-----------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Generic/Regular | MAT-HG-4016/<br>MAT-RC-4016:<br>Real Analysis | <ul> <li>iv) Learn about the polynomial rings over commutative rings, integral domains, Euclidean domains, and UFD.</li> <li>This course will enable the students to: <ul> <li>i) Understand many properties of the real line R, including completeness and Archimedean properties.</li> <li>ii) Learn to define sequences in terms of functions from R to a subset of R.</li> <li>iii) Recognize bounded, convergent, divergent, Cauchy and monotonic sequences and to calculate their limit superior, limit inferior, and the limit of a bounded sequence.</li> <li>iv) Apply the ratio, root, alternating series and limit comparison tests for convergence of an infinite series of real numbers.</li> </ul> </li> </ul>                                     |

|                 | Skill<br>Enhancement<br>Course | MAT-SE-4024:<br>LaTeX and HTML                              | After studying this course the<br>student will be able to:<br>i) Create and typeset a LaTeX<br>document.<br>ii) Typeset a mathematical<br>document using LaTex.<br>iii) Learn about pictures and<br>graphics in LaTex.<br>iv) Create beamer presentations.<br>v) Create web page using HTML.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|-----------------|--------------------------------|-------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 5 <sup>th</sup> | Honours                        | MAT-HC-5016:<br>Riemann<br>Integration and<br>Metric spaces | The course will enable the students<br>to:<br>i) Learn about some of the classes<br>and properties of Riemann<br>integrable functions, and the<br>applications of the<br>Fundamental theorems of<br>integration.<br>ii) Know about improper integrals<br>including, beta and gamma<br>functions.<br>iii) Learn various natural and<br>abstract formulations of distance on<br>the sets of usual or unusual entities.<br>Become<br>aware one such formulations<br>leading to metric spaces.<br>iv) Analyse how a theory advances<br>from a particular frame to a general<br>frame.<br>v) Appreciate the mathematical<br>understanding of various<br>geometrical concepts, viz. Balls or<br>connected sets etc. in an abstract<br>setting.<br>vi) Know about Banach fixed point<br>theorem, whose far-reaching<br>consequences have resulted into an<br>independent branch of study in<br>analysis, known as fixed point<br>theory.<br>vii) Learn about the two important<br>topological properties, namely<br>connectedness and compactness of<br>metric spaces. |
|                 |                                |                                                             | The course will enable the students to:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |

| 5 <sup>th</sup> | Honours                                               | MAT-HC-5026:<br>Linear Algebra | <ul> <li>i) Learn about the concept of linear independence of vectors over a field, and the dimension of a vector space.</li> <li>ii) Basic concepts of linear transformations, dimension theorem, matrix representation of a linear transformation, and the change of coordinate matrix.</li> <li>iii) Compute the characteristic polynomial, eigenvalues, eigenvectors, and eigenspaces, as well as the geometric and the algebraic multiplicities of an eigenvalue and apply the basic diagonalization result.</li> <li>iv) Compute inner products and determine orthogonality on vector spaces, including Gram–Schmidt orthogonalization to obtain orthonormal basis.</li> <li>v) Find the adjoint normal unitary</li> </ul> |
|-----------------|-------------------------------------------------------|--------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                 |                                                       |                                | and orthogonal operators.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                 | Honours<br>(Discipline<br>Specific Elective<br>(DSE)) | MAT-HE-5016:<br>Number Theory  | This course will enable the students<br>to:<br>i) Learn about some fascinating<br>discoveries related to the properties<br>of prime numbers, and some of the<br>open problems in number theory,<br>viz., Goldbach conjecture etc.<br>ii) Know about number theoretic<br>functions and modular arithmetic.<br>iii) Solve linear, quadratic and<br>system of linear congruence<br>equations.                                                                                                                                                                                                                                                                                                                                       |

|                 | Honours<br>(Discipline<br>Specific Elective<br>(DSE))         | MAT-HE-5066:<br>Programming in<br>C                  | After completion of this paper,<br>student will be able to:<br>i) Understand and apply the<br>programming concepts of C which<br>is important to mathematical<br>investigation and problem solving.<br>ii) Learn about structured data-types<br>in C and learn about applications in<br>factorization of an integer and<br>understanding Cartesian geometry<br>and Pythagorean triples.<br>iii) Use of containers and templates<br>in various applications in algebra.<br>iv) Use mathematical libraries for<br>computational objectives.<br>v) Represent the outputs of<br>programs visually in terms of well<br>formatted text and plots. |
|-----------------|---------------------------------------------------------------|------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                 | Generic/Regular<br>(Discipline<br>Specific Elective<br>(DSE)) | MAT-RE-5016:<br>Number Theory                        | This course will enable the students<br>to:<br>i) Learn about some fascinating<br>discoveries related to the properties<br>of prime numbers, and some of the<br>open problems in number theory,<br>viz., Goldbach conjecture etc.<br>ii) Know about number theoretic<br>functions and modular arithmetic.<br>iii) Solve linear, quadratic and<br>system of linear congruence<br>equations.                                                                                                                                                                                                                                                  |
| 5 <sup>th</sup> | Regular (SEC)                                                 | MAT-SE-5014:<br>Combinatorics<br>and Graph<br>Theory | This course will enable the students<br>to:<br>i) Learn about the counting<br>principles, permutations and<br>combinations, Pigeonhole principle<br>ii) Understand the basics of graph<br>theory and learn about social<br>networks, Eulerian and Hamiltonian<br>graphs, diagram tracing puzzles and<br>Knight's tour problem.                                                                                                                                                                                                                                                                                                              |
|                 | Honours                                                       | MAT-HC-6016:<br>Complex Analysis                     | Completion of the course will<br>enable the students to:<br>CO1. Learn the significance of<br>differentiability of complex<br>functions leading to the<br>understanding of Cauchy–Riemann<br>equations.                                                                                                                                                                                                                                                                                                                                                                                                                                     |

| 6 <sup>th</sup> |                  |                                                           | <ul> <li>CO2. Learn some elementary functions and can evaluate the contour integrals.</li> <li>CO3. Understand the role of Cauchy–Goursat theorem and the Cauchy integral formula.</li> <li>CO4. Expand some simple functions as their Taylor and Laurent series, classify the nature of singularities, find residues and apply Cauchy Residue theorem to evaluate integrals.</li> </ul>                                                                                                                                                  |
|-----------------|------------------|-----------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                 | Honours          | MAT-HC-6026:<br>Partial Differential<br>Equations         | <ul> <li>The course will enable the students to:</li> <li>CO1. Formulate, classify and transform first order PDEs into canonical form.</li> <li>CO2. Learn about method of characteristics and separation of variables to solve first order PDE's.</li> <li>CO3. Classify and solve second order linear PDEs.</li> <li>CO4. Learn about Cauchy problem for second order PDE and homogeneous as well as nonhomogeneous wave equations.</li> <li>CO5. Apply the method of separation of variables for solving second order PDEs.</li> </ul> |
|                 | Honours<br>(DSE) | MAT-HE-6016:<br>Boolean Algebra<br>and Automata<br>Theory | The course will enable the students<br>to:<br>i) Learn about the order<br>isomorphism, Hasse diagrams,<br>building new ordered set.<br>ii) Learn about the algebraic<br>structure lattices, properties of<br>modular and distributive lattices.<br>iii) Get ideas about the Boolean<br>algebra, Switching circuits and<br>applications of switching circuits.<br>iv) Appreciate the theory of<br>automata and its applications.                                                                                                           |

| Regular<br>(DSE)                            | MAT-RE-6026:<br>Programming in C | After completion of this paper,<br>student will be able to:<br>i) Understand and apply the<br>programming concepts of C which<br>is important to mathematical<br>investigation and problem solving.<br>ii) Learn about structured data-types<br>in C and learn about applications in<br>factorization of an integer and<br>understanding Cartesian geometry<br>and Pythagorean triples.<br>iii) Use of containers and templates<br>in various applications in algebra.<br>iv) Use mathematical libraries for<br>computational objectives.<br>v) Represent the outputs of<br>programs visually in terms of well<br>formatted text and plots. |
|---------------------------------------------|----------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Skill<br>Enhancement<br>Course<br>(Regular) | MAT-SE-6014:<br>LaTeX and HTML   | After studying this course the<br>student will be able to:<br>i) Create and typeset a LaTeX<br>document.<br>ii) Typeset a mathematical<br>document using LaTex.<br>iii) Learn about pictures and<br>graphics in LaTex.<br>iv) Create beamer presentations.<br>v) Create web page using HTML.                                                                                                                                                                                                                                                                                                                                                |